A hidrogén színtelen, szagtalan, szobahőmérsékleten gáz-halmazállapotú elem. Igen alacsony hőmérsékleten (-253 °C) lecsapódik, majd néhány fokkal még alacsonyabb hőmérsékleten (-259 °C) megfagy. Kristályának rácspontjain molekulák vannak, vagyis molekularácsos elem. Az alacsony olvadás- és forráspont a molekulák közti igen gyenge összetartó erőre (diszperziós erőre) utal, amely a molekula apoláris szerkezetéből következik. A kisméretű molekulák diffúziósebessége és ezzel a hővezető képessége nagy. Kis moláris tömege miatt sűrűsége még a gázok között is a legkisebb.
A hidrogént kis sűrűsége miatt sokáig léggömbök, léghajók töltésére is használták. Balesetveszélyessége miatt - minthogy a levegő oxigénjével kisebb szikra hatására is robbanásszerűen egyesülhet - ma már inkább héliumot használnak erre a célra.
A fejlesztett hidrogént felfoghatjuk víz alatt (azaz a vízzel teli edényből kiszoríthatjuk vele a vizet). Ez arra utal, hogy a hidrogén vízben gyakorlatilag nem oldódik.
A hidrogénkémiaisajátosságait vizsgálva kijelenthetjük, hogy - a hidrogénmolekulát összetartó erős, kovalens kötés megbontása után - sok anyaggal vihető reakcióba.
A legkönnyebben és a leghevesebben a fluorral lép reakcióba. Klórral való reakciójához szikra vagy erős ultraibolya sugárzás biztosítja az aktiválást. Mindkét reakció - csakúgy mint a szikra hatására bekövetkező durranógáz-reakció is - exoterm és robbanásszerűen megy végbe.
A VII. főcsoport többi tagjával - a brómmal és a jóddal - egyre kevésbé heves reakcióban egyesül. Lassan lép reakcióba a nitrogénnel is, miközben ammónia (NH3) keletkezik. A folyamat gyorsítására katalizátort használnak. Ez a folyamat ipari szempontból igen fontos, részletesen a nitrogénnél foglalkozunk vele.
A hidrogént egyes fémek, például a platina, atomos állapotban oldják. Ezzel a reakciókészséget jelentősen növelik.
Több tényező is befolyásolja, hogy egy anyag - például a hidrogén - mivel lép könnyen reakcióba és mivel nehezebben. Ha az anyagkötéseigyengék, könnyen felszakíthatók, a reakcióra megvan az esély. A reakcióhevességét azonban jelentősen befolyásolja a reakciópartner is. A hidrogén a molekuláján belüli erős kötése miatt nem készséges reagens. A fluor és a klórmolekulái azonban viszonylag könnyen (például ultraibolya sugarak hatására) atomokra bonthatók, és ezek az atomok már sikerrel támadhatják meg a hidrogénmolekulát.
Az oxigénatomok erősebben kötődnek egymáshoz, ez esetben szikrára van szükség a folyamat megindulásához: ráadásul a szikra a hidrogénmolekulákat bontja szét, és így a hidrogénatomok kezdik támadni az oxigénmolekulákat.
A nitrogénatomok között még erősebb a kapcsolat, ezért katalizátor és melegítés együttes alkalmazása az egyetlen célravezető módszer a folyamathoz.
A hidrogénnek az oxigénnel való vegyülési hajlama, azaz az oxigénhez való affinitása olyan nagy, hogy még egyes fém-oxidokból is elvonhatja azt.
Vezessünk kémcsőben lévő, fekete réz-oxidra hidrogéngázt! Ne feledjük elvégezni a durranógáz próbát!
Amikor a hidrogén már egészen bizonyosan kiszorította az összes levegőt, kezdjük melegíteni a kémcsőben lévő réz-oxidot! Figyeljük meg a változásokat!
A fekete por színe lassan vörösre változik. A kémcső hidegebb falrészein páralecsapódás figyelhető meg.
A hidrogén segítségével az oxidálódott rézből ismét elemi rezet állítottunk elő. Ilyenkor azt mondjuk, redukáltuk a rezet. A redukció az oxidációval ellentétes folyamat, ebben a reakcióban az oxigén elvonását jelenti. A hidrogén sok fémredukálószere.