A kölcsönhatások során a pontrendszer tagjai között fellépő erőket belső erőknek nevezzük.
A pontrendszerhez nem tartozó testek által a rendszer tagjaira kifejtett erőket külső erőknek nevezzük.
Egy kötél rendelkezik az ideális kötél tulajdonságával, ha nem nyúlik és tömege elhanyagolható.
Alkosson egy pontrendszert két olyan kocsi, amely egy ideális kötéllel van összekötve. A két kocsi egyirányban és a kötél egyenesében mozog. A kötél nyújthatatlansága miatt a két kocsi együtt fog mozogni, és az elmozdulásaik is megegyeznek. Ebből következik, hogy pillanatnyi sebességük és gyorsulásuk is mindig azonos. Gondolatmenetünk alapján tehát azt mondhatjuk, hogy a két test gyorsulása a mozgás során egyenlő.
Az egyes problémák tárgyalása során a gyorsulások közötti matematikai kapcsolat meghatározása, más néven a kényszerfeltételek megadása, az egyik legnehezebb feladat, ugyanis a gyorsulások nem minden esetben egyenlőek. Mivel azonban a kényszerfeltételekre mindig szükségünk van, a legnehezebb esetekben is érdemes megkeresni az egyes testek elmozdulásai közötti összefüggést, mert ebből már következik a gyorsulásaik közötti kapcsolat is.
Pontrendszert tartalmazó feladat esetén a következő lépéssort célszerű végrehajtani:
- meg kell határoznunk a pontrendszer egyes tagjaira ható erőket,
- az erők ismeretében föl kell írnunk a dinamika alapegyenletét a pontrendszer minden egyes tagjára, ezek adják az egyes testek mozgásegyenleteit,
- a rendszer tagjai között esetleg fönnálló kapcsolatok, kényszerek figyelembevételével meg kell fogalmaznunk a kényszerfeltételeket.
- meg kell oldanunk az így kapott egyenletrendszert.