T öltsünk fel egy elektroszkópot és kössük össze fémpálcán keresztül egy másik feltöltetlen elektroszkóppal. Azt tapasztaljuk, hogy az eredetileg feltöltött elektroszkóp kisebb töltést jelez, míg a másik feltöltődik. Azt mondhatjuk, hogy az elektroszkópokat összekötő pálcán elektromos töltés áramlott az egyik elektroszkópról a másik elektroszkópra. Ebben az esetben a töltésáramlás úgy jön létre, hogy a fémekszabad elektronjai mozdulnak el egy adott irányban.
A töltések áramlásának kimutatására használhatunk másik kísérleti összeállítást is! Két elektroszkópot glimmlámpán keresztül összekötünk, és az egyiket leföldeljük. Amikor megdörzsölt műanyag rúddal hozzáérünk a földeletlen elektroszkóphoz, a glimmlámpa felvillan. A lámpa felvillanása a két elektroszkóp közötti töltésáramlás következménye.
Van de Graaf-generátor burája és a földelt fémgömb között szikra jön létre. A szikrák a két test között na gy sebességgel mozgó elektronok hatására keletkeznek. Ebben az esetben is elektromos töltéssel rendelkező részecskék adott irányú mozgásáról beszélhetünk.
Mindennapjainkban az elektromos áram vezetékekben, és elektromos eszközökben folyik, amennyiben a megfelelő áramforráshoz csatlakoztatjuk őket.
Egyszerű áramkört elemből, vezetékből és izzóból állíthatunk össze. Amikor minden vezetéket megfelelően csatlakoztattunk, az izzó világít. Ekkor a vezetékeken és az izzón elektromos áram folyik keresztül. Ezt abból tudjuk, hogy a lámpa világít. Ha csak a drótokat nézzük, nem tudjuk megmondani, hogy folyik-e bennük elektromos áram. Mivel az elektromos áram az anyag belsejében folyik, nem látható. Jelenlétére hatásaiból következtethetünk.
Az elektromos áram mágneses-, kémiai-, élettani- és hőhatásáról szoktak beszélni.