Ma már mindenki számára ismert kifejezés a másfél voltos ceruzaelem vagy a 220 V-os elektromos hálózat, de a "vigyázat, magasfeszültség" feliratú tábla szövege is. Ismerkedjünk meg kicsit közelebbről az elektromos feszültséggel!
Amikor bekapcsoljuk a hajszárítót, akkor azon elektromos áram folyik keresztül. Használat közben a hajszárító hőt termel és nagy mennyiségű levegőt hoz mozgásba. Ezt úgy éri el, hogy az elektromos energiát alakítja hő- és mozgási energiává. Azt mondhatjuk, hogy az áramforrás, jelen esetben a hálózat munkát végez. Általában igaz, hogy az elektromos áram fenntartásához az áramforrásnak munkát kell végeznie. Ezt a munkát a benne tárolt energia rovására végzi.
Egyszerű áramkörben, ha áramforrásként különböző elemeket használunk, akkor az izzó is különböző fényességgel világít, miközben a körben folyó áram értéke más és más. Amikor egy 1,5 V-os ceruzaelemet használunk, az izzó épphogy világít, 4,5 V-os laposelemet használva az izzó sárgásvörösen izzik, 9 V-os elem esetén fényesen világít. Egy játékautóból kiszerelt villanymotorral is azt tapasztaljuk, hogy nagyobb feszültség esetén a motor sokkal gyorsabban forog.
A fentebb leírtakból arra következtethetünk, hogy
- a telepre írt feszültség értékétől függ, hogy egy adott fogyasztó esetén mekkora áram folyik az áramkörben,
- ugyanennek a feszültségnek a függvénye, hogy az izzó mennyire fényesen világít, azaz mennyi hőt termel az adott idő alatt.
Az elektromos feszültség az áramforrásnak ezt a két tulajdonságát fejezi ki. Az az áramforrás képes nagyobb áramot létrehozni ugyanabban a fogyasztóban, amelyiknek nagyobb a feszültsége. Ugyanez a nagyobb feszültségű áramforrás adott idő alatt több munkát képes végezni.
Az áramforrás feszültségének jele U, mértékegysége a volt (V). Ezt a feszültséget a feszültségmérő műszerrel tudjuk mérni.