A felhajtóerő
Egy szabályos hasábot merítsünk teljesen vízbe! A hasáb felső lapja közelebb van a felszínhez, mint az alsó. Így a hasábra felülről lefelé kisebb hidrosztatikai nyomás hat, mint alulról felfelé. Ennek eredményeképpen, ha a felső és alsó lap azonos méretű, akkor a lapokra ható erők is különbözők lesznek. Az eredmény egy felfelé mutató eredőerő, aminek a neve felhajtóerő. Fontos hangsúlyozni, hogy a felhajtóerő a hidrosztatikai nyomáskülönbségből származik. Akkor jön létre, ha a folyadéknak van súlya, s így van hidrosztatikai nyomás.
Arkhimédész törvénye
A felhajtóerő nagyságára vonatkozó törvényt először Arkhimédész, görög tudós mondta ki: Minden folyadékba merülő testre felhajtóerő hat. Ez az erő a test által kiszorított folyadék súlyával egyenlő.
Kísérlet a felhajtóerő megjelenésének körülményeire
A felhajtóerő csak akkor jöhet létre, ha a folyadék a tárgy alsó felületét is éri. Ennek bemutatása a következő módon történhet. Ha egy sima parafadugót leszorítunk az edény aljára, higanyt öntünk rá, majd elengedjük, a dugó nem jön fel a higany felszínére. A higany nem tudott a dugó alá kerülni, csak felülről nyomja azt, nem alakult ki nyomáskülönbség, s így felhajtóerő sem. Ha kicsit megmozdítjuk a dugót, a higany a dugó alá jut, s a felhajtóerő azonnal fellöki a dugót a higany felszínére.
Arkhimédész törvényének matematikai indoklása
Merítsünk egy egyenes hasáb alakú testet folyadékba! A növekvő mélységgel a hidrosztatikai nyomás egyre nő. Így a hasáb alaplapjánál lévő nyomás és egyben a felfelé irányuló nyomóerő is nagyobb, mint a fedőlapjánál lévő nyomás, illetve a lefelé irányuló nyomóerő. Az oldallapokon ható oldalnyomások egy adott szinten egyenlők, így kiegyenlítik egymást. Az alap-, illetve fedőlapokon ható erők azonban különbözőek, ezek eredője hozza létre a felhajtóerőt. Számoljuk ki az eredőerő nagyságát!
Ha a test fedőlapja h1, alaplapja h2 mélységben van a víz felszíne alatt, akkor a fedőlapra irányuló lefelé mutató erő nagysága:
,
ahol ρf a folyadék sűrűsége. Az alaplapra felfelé irányuló erő nagysága:
E két erő különbsége adja a felhajtóerőt:
,
ahol h a test magassága.
Ha figyelembe vesszük, hogy , akkor a felhajtóerőre a következőt kapjuk:
,
ami éppen a test által kiszorított folyadék súlya.
Arkhimédész törvénye szabálytalan alakú test esetén
Tetszőleges alakú test esetében az alábbi szellemes gondolatmenet alkalmazható.
Szemeljünk ki egy olyan folyadékrészt, amely egybevágó a választott testtel! Nyugvó folyadékban az erre a részre ható erők eredője zérus. A nehézségi erő mellett tehát egy vele azonos nagyságú, de ellentétes irányú felhajtóerőnek is hatnia kell a folyadékrészre. Ezt az erőt az őt körülvevő folyadékrészecskék fejtik ki. Ha a folyadékrészt kicseréljük a vizsgált testre, az őt körülvevő folyadékrészecskék rá ugyanúgy kifejtik a hatásukat, mint az előző esetben a folyadékrészre, vagyis a testre is ugyanolyan felhajtóerő hat.
Ebből a gondolatmenetből az is következik, hogy a felhajtóerő támadáspontja a kiszorított térfogatba képzelt folyadék súlypontjában található.